Motivic Decompositions of Families With Tate Fibers: Smooth and Singular Cases

Author:

Cavicchi M1,Déglise F2,Nagel J3

Affiliation:

1. IRMA (UMR7501), 7 rue René-Descartes 67084 Strasbourg Cedex, France

2. CNRS, IMB (UMR5569), ENS de Lyon , UMPA, 46 allée d’Italie 69364 Lyon Cedex 07, France

3. IMB (UMR5584), CNRS, Université Bourgogne-Franche-Comté , 9 avenue Alain Savary 21000 Dijon Cedex, France

Abstract

AbstractWe apply Wildeshaus’s theory of motivic intermediate extensions to the motivic decomposition conjecture, formulated by Deninger–Murre and Corti–Hanamura. We first obtain a general motivic decomposition for the Chow motive of an arbitrary smooth projective family $f:X \rightarrow S$ whose geometric fibers are Tate. Using Voevodsky’s motives with rational coefficients, the formula is valid for an arbitrary regular base $S$, without assuming the existence of a base field or even of a prime integer $\ell $ invertible on $S$. This result, and some of Bondarko’s ideas, lead us to a generalized formulation of Corti–Hanamura’s conjecture. Secondly we establish the existence of the motivic decomposition when $f:X \rightarrow S$ is a projective quadric bundle over a characteristic $0$ base, which is either sufficiently general or whose discriminant locus is a normal crossing divisor. This provides a motivic lift of the Bernstein–Beilinson–Deligne decomposition in this setting.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference42 articles.

1. The Homotopy Leray Spectral Sequence;Asok,2020

2. Quadric surface bundles over surfaces;Auel;Doc. Math. Extra Vol.,2015

3. Note sur les opérations de Grothendieck et la réalisation de Betti;Ayoub;J. Inst. Math. Jussieu,2010

4. Smooth Reflexive Sheaves;Bănică,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3