On BMO and Carleson Measures on Riemannian Manifolds

Author:

Brazke Denis1,Schikorra Armin2,Sire Yannick3

Affiliation:

1. Department of Mathematics, University of Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

2. Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA

3. Johns Hopkins University, Krieger Hall, Baltimore, USA

Abstract

Abstract Let $\mathcal{M}$ be a Riemannian $n$-manifold with a metric such that the manifold is Ahlfors regular. We also assume either non-negative Ricci curvature or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. We characterize BMO-functions $u: \mathcal{M} \to \mathbb{R}$ by a Carleson measure condition of their $\sigma $-harmonic extension $U: \mathcal{M} \times (0,\infty ) \to \mathbb{R}$. We make crucial use of a $T(b)$ theorem proved by Hofmann, Mitrea, Mitrea, and Morris. As an application, we show that the famous theorem of Coifman–Lions–Meyer–Semmes holds in this class of manifolds: Jacobians of $W^{1,n}$-maps from $\mathcal{M}$ to $\mathbb{R}^n$ can be estimated against BMO-functions, which now follows from the arguments for commutators recently proposed by Lenzmann and the 2nd-named author using only harmonic extensions, integration by parts, and trace space characterizations.

Funder

Simons Foundation

Daimler and Benz Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference20 articles.

1. Lecture Notes in Mathematics 2142;Alvarado,2015

2. Riesz transform on manifolds and heat kernel regularity;Auscher;Ann. Sci. École Norm. Sup. (4),2004

3. Levico Summer School Lecture Notes;Baudoin

4. A note on the boundedness of Riesz transform for some subelliptic operators;Baudoin;Int. Math. Res. Not. IMRN

5. An extension problem related to the fractional Laplacian;Caffarelli;Comm. Partial Differential Equations,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Coincidence between Campanato Functions and Lipschitz Functions: A New Approach via Elliptic PDES;The Quarterly Journal of Mathematics;2024-05-02

2. A revisit to “On BMO and Carleson measures on Riemannian manifolds”;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3