Maximal Tori in HH1 and the Fundamental Group

Author:

Briggs Benjamin1,Rubio y Degrassi Lleonard2

Affiliation:

1. Mathematical Sciences Research Institute , 17 Gauss Way, Berkeley, CA 94720

2. Dipartimento di Informatica–Settore di Matematica , Università degli Studi di Verona, Strada le Grazie 15–Ca’ Vignal, I-37134 Verona, Italy

Abstract

Abstract We investigate maximal tori in the Hochschild cohomology Lie algebra ${\operatorname {HH}}^1(A)$ of a finite dimensional algebra $A$, and their connection with the fundamental groups associated to presentations of $A$. We prove that every maximal torus in ${\operatorname {HH}}^1(A)$ arises as the dual of some fundamental group of $A$, extending the work by Farkas, Green, and Marcos; de la Peña and Saorín; and Le Meur. Combining this with known invariance results for Hochschild cohomology, we deduce that (in rough terms) the largest rank of a fundamental group of $A$ is a derived invariant quantity, and among self-injective algebras, an invariant under stable equivalences of Morita type. Using this we prove that there are only finitely many monomial algebras in any derived equivalence class of finite dimensional algebras; hitherto this was known only for very restricted classes of monomial algebras.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference56 articles.

1. Brauer graph algebras are closed under derived equivalence;Antipov,2019

2. Gerstenhaber structure on Hochschild cohomology of toupie algebras;Artenstein;Algebras Represent. Theory,2020

3. Simply connected algebras;Assem;Resenhas,1999

4. Coverings of laura algebras: the standard case;Assem;J. Algebra,2010

5. The fundamental groups of a triangular algebra;Assem;Comm. Algebra,1996

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Hochschild cohomology groups under gluing arrows;Communications in Algebra;2024-04-03

2. On the Lie algebra structure of integrable derivations;Bulletin of the London Mathematical Society;2023-07-06

3. Stable invariance of the restricted Lie algebra structure of Hochschild cohomology;Pacific Journal of Mathematics;2022-12-31

4. The Modular Isomorphism Problem: A Survey;Jahresbericht der Deutschen Mathematiker-Vereinigung;2022-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3