Affiliation:
1. Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Abstract
Abstract
We consider a locally finite (Radon) measure on $ {\operatorname{SO}}^+(d,1)/ \Gamma $ invariant under a horospherical subgroup of $ {\operatorname{SO}}^+(d,1) $ where $ \Gamma $ is a discrete, but not necessarily geometrically finite, subgroup. We show that whenever the measure does not observe any additional invariance properties then it must be supported on a set of points with geometrically degenerate trajectories under the corresponding contracting $ 1 $-parameter diagonalizable flow (geodesic flow).
Funder
European Research Council
Israel Science Foundation
National Science Foundation
Publisher
Oxford University Press (OUP)
Reference31 articles.
1. On the Classification of Invariant Measures for Horosphere Foliations on Nilpotent Covers of Negatively Curved Manifolds;Babillot,2004
2. Geodesic Paths and Horocycle Flow on Abelian Covers;Babillot,1998
3. Geometrical finiteness for hyperbolic groups;Bowditch;J. Funct. Anal.,1993
4. Horocycle flow on geometrically finite surfaces;Burger;Duke Math. J.,1990
5. Remarques sur le spectre des longueurs d’une surface et comptages;Dal’bo;Bol. Soc. Brasil. Mat. (N.S.),1999
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献