Affiliation:
1. Humboldt-Universität zu Berlin, Unter den Linden 6, 10066 Berlin, Germany
Abstract
Abstract
We show that vanishing of asymptotic $p$-th syzygies implies $p$-very ampleness for line bundles on arbitrary projective schemes. For smooth surfaces, we prove that the converse holds when $p$ is small, by studying the Bridgeland–King–Reid–Haiman correspondence for tautological bundles on the Hilbert scheme of points. This extends the previous results by Ein–Lazarsfeld and Ein–Lazarsfeld–Yang and gives a partial answer to some of their questions. As an application of our results, we show how to use syzygies to bound the irrationality of a variety.
Funder
Deutscher Akademischer Austauschdienst
Deutsche Forschungsgemeinschaft
DFG Schwerpunkt 1489
Berlin Mathematical School
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献