Differentiability of Relative Volumes Over an Arbitrary Non-Archimedean Field

Author:

Boucksom Sébastien1,Gubler Walter2,Martin Florent2

Affiliation:

1. Centre de Mathématiques Laurent Schwartz, Ecole Polytechnique and CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France

2. Mathematik, Universität Regensburg, 93040 Regensburg, Germany

Abstract

Abstract Given an ample line bundle $L$ on a geometrically reduced projective scheme defined over an arbitrary non-Archimedean field, we establish a differentiability property for the relative volume of two continuous metrics on the Berkovich analytification of $L$, extending previously known results in the discretely valued case. As applications, we provide fundamental solutions to certain non-Archimedean Monge–Ampère equations and generalize an equidistribution result for Fekete points. Our main technical input comes from determinant of cohomology and Deligne pairings.

Funder

ANR

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. Théorème de Hilbert-Samuel «arithmétique»;Abbes;Ann. Inst. Fourier (Grenoble),1995

2. Volume 33 of Mathematical Surveys and Monographs;Berkovich,1990

3. Growth of balls of holomorphic sections and energy at equilibrium;Berman;Invent. Math,2010

4. Fekete points and convergence towards equilibrium measures on complex manifolds;Berman;Acta Math,2011

5. A variational approach to complex Monge-Ampère equations;Berman;Publ. Math. Inst. Hautes Études Sci,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations;Annales de l'Institut Fourier;2024-07-03

2. Deligne–Riemann–Roch and intersection bundles;Journal de l’École polytechnique — Mathématiques;2024-01-26

3. Hilbert-Samuel Property;Progress in Mathematics;2024

4. Introduction;Progress in Mathematics;2024

5. Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3