Period Collapse in Characteristic Quasi-Polynomials of Hyperplane Arrangements

Author:

Higashitani Akihiro1,Tran Tan Nhat2,Yoshinaga Masahiko3

Affiliation:

1. Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan

2. Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

3. Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Abstract

Abstract Given an integral hyperplane arrangement, Kamiya–Takemura–Terao [11, 12] introduced the notion of characteristic quasi-polynomial, which enumerates the cardinality of the complement of the arrangement modulo a positive integer. The most popular candidate for periods of the characteristic quasi-polynomials is the lcm period. In this paper, we initiate a study of period collapse in characteristic quasi-polynomials stemming from the concept of period collapse in the theory of Ehrhart quasi-polynomials. We say that period collapse occurs in a characteristic quasi-polynomial when the minimum period is strictly less than the lcm period. Our first main result is that in the non-central case, with regard to period collapse anything is possible: period collapse occurs in any dimension $\ge 1$, occurs for any value $\ge 2$ of the lcm period, and the minimum period when it is not the lcm period can be any proper divisor of the lcm period. Our second main result states that in the central case, however, no period collapse is possible in any dimension, that is, the lcm period is always the minimum period.

Funder

JSPS Grant-in-Aid for Scientists Research

JSPS Research Fellowship for Young Scientists

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. Eulerian polynomials for subarrangements of Weyl arrangements;Ashraf;Adv. Appl. Math.,2020

2. Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes;Athanasiadis;Bull. Lond. Math. Soc.,2004

3. Maximal periods of (Ehrhart) quasi-polynomials;Beck;J. Comb. Theory Ser. A,2008

4. Inside-out polytopes;Beck;Adv. Math.,2006

5. The multivariate arithmetic Tutte polynomial;Brändén;Trans. Amer. Math. Soc.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive fusion of multi-exposure images based on perceptron model;Applied Mathematics and Nonlinear Sciences;2023-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3