Tamely Ramified Geometric Langlands Correspondence in Positive Characteristic

Author:

Shen Shiyu1

Affiliation:

1. The Institute of Science and Technology Austria , Klosterneuburg 3400, Austria

Abstract

Abstract We prove a version of the tamely ramified geometric Langlands correspondence in positive characteristic for $GL_{n}(k)$, where $k$ is an algebraically closed field of characteristic $p> n$. Let $X$ be a smooth projective curve over $k$ with marked points, and fix a parabolic subgroup of $GL_{n}(k)$ at each marked point. We denote by $\operatorname{Bun}_{n,P}$ the moduli stack of (quasi-)parabolic vector bundles on $X$, and by $\mathcal{L}oc_{n,P}$ the moduli stack of parabolic flat connections such that the residue is nilpotent with respect to the parabolic reduction at each marked point. We construct an equivalence between the bounded derived category $D^{b}(\operatorname{QCoh}({\mathcal{L}oc_{n,P}^{0}}))$ of quasi-coherent sheaves on an open substack $\mathcal{L}oc_{n,P}^{0}\subset \mathcal{L}oc_{n,P}$, and the bounded derived category $D^{b}(\mathcal{D}^{0}_{{\operatorname{Bun}}_{n,P}}\operatorname{-mod})$ of $\mathcal{D}^{0}_{{\operatorname{Bun}}_{n,P}}$-modules, where $\mathcal{D}^{0}_{\operatorname{Bun}_{n,P}}$ is a localization of $\mathcal{D}_{\operatorname{Bun}_{n,P}}$ the sheaf of crystalline differential operators on $\operatorname{Bun}_{n,P}$. Thus, we extend the work of Bezrukavnikov–Braverman [ 8] to the tamely ramified case. We also prove a correspondence between flat connections on $X$ with regular singularities and meromorphic Higgs bundles on the Frobenius twist $X^{(1)}$ of $X$ with first-order poles.

Publisher

Oxford University Press (OUP)

Reference29 articles.

1. Appendix to [14];Arinkin

2. Singular support of coherent sheaves, and the geometric Langlands conjecture;Arinkin;Selecta Math.,2015

3. On the image of the parabolic Hitchin map;Baraglia;Q. J. Math.,2018

4. Complete integrability of the parahoric Hitchin system;Baraglia,2017

5. Un lemme de descente;Beauville;C. R. Acad. Sci. Paris Sér. I Math.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3