Hyperbolicity and Uniformity of Varieties of Log General type

Author:

Ascher Kenneth1,DeVleming Kristin2,Turchet Amos3

Affiliation:

1. Department of Mathematics, Princeton University, Princeton, NJ USA

2. Department of Mathematics, University of California, San Diego, San Diego, CA USA

3. Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore, Pisa, Italy

Abstract

Abstract Projective varieties with ample cotangent bundle satisfy many notions of hyperbolicity, and one goal of this paper is to discuss generalizations to quasi-projective varieties. A major hurdle is that the naive generalization is false—the log cotangent bundle is never ample. Instead, we define a notion called almost ample that roughly asks that it is as positive as possible. We show that all subvarieties of a quasi-projective variety with almost ample log cotangent bundle are of log general type. In addition, if one assumes globally generated then we obtain that such varieties contain finitely many integral points. In another direction, we show that the Lang–Vojta conjecture implies the number of stably integral points on curves of log general type, and surfaces of log general type with almost ample log cotangent sheaf are uniformly bounded.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference56 articles.

1. Uniformité des points rationnels des courbes algébriques sur les extensions quadratiques et cubiques;Abramovich;C. R. Acad. Sci., Paris, Sér. I,1995

2. A high fibered power of a family of varieties of general type dominates a variety of general type;Abramovich;Invent. Math.,1997

3. Uniformity of stably integral points on elliptic curves;Abramovich;Invent. Math.,1997

4. Uniformity of stably integral points on principally polarized Abelian varieties of dimension $\le 2$;Abramovich;Isr. J. Math.,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lang–Vojta conjecture over function fields for surfaces dominating $${{\mathbb {G}}}_m^2$$;European Journal of Mathematics;2021-11-29

2. Nonspecial varieties and generalised Lang–Vojta conjectures;Forum of Mathematics, Sigma;2021

3. Non-archimedean entire curves in closed subvarieties of semi-abelian varieties;Mathematische Annalen;2020-09-05

4. Finiteness Properties of Pseudo-Hyperbolic Varieties;International Mathematics Research Notices;2020-07-24

5. The Erdős–Ulam problem, Lang's conjecture and uniformity;Bulletin of the London Mathematical Society;2020-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3