Affiliation:
1. Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Abstract
Abstract
We show that Steklov eigenfunctions in a bounded Lipschitz domain have wavelength dense nodal sets near the boundary, in contrast to what can happen deep inside the domain. Conversely, in a 2D Lipschitz domain $\Omega $, we prove that any nodal domain of a Steklov eigenfunction contains a half-ball centered at $\partial \Omega $ of radius $c_{\Omega }/{\lambda }$.
Funder
Research Council of Norway
Publisher
Oxford University Press (OUP)
Reference20 articles.
1. On a mixed Poincaré–Steklov type spectral problem in a Lipschitz domain;Agranovich;Russian J. Math. Phys.,2006
2. Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains;Arendt,2007
3. Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup;Arendt;Commun. Pure Appl. Anal.,2012
4. Eigenvalue Inequalities for Mixed Steklov Problems;Bañuelos,2010
5. Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains;Bass;Ann. Probab.,1991
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献