Monodromy Kernels for Strata of Translation Surfaces

Author:

Giannini Riccardo1

Affiliation:

1. School of Mathematics and Statistics , University of Glasgow, University Place, Glasgow G12 8QQ, UK

Abstract

Abstract The non-hyperelliptic connected components of the strata of translation surfaces are conjectured to be orbifold classifying spaces for some groups commensurable to some mapping class groups. The topological monodromy map of the non-hyperelliptic components projects naturally to the mapping class group of the underlying punctured surface and is an obvious candidate to test commensurability. In the present article, we prove that for the components $\mathcal {H}(3,1)$ and $\mathcal {H}^{nh}(4)$ in genus 3 the monodromy map fails to demonstrate the conjectured commensurability. In particular, building on the work of Wajnryb, we prove that the kernels of the monodromy maps for $\mathcal {H}(3,1)$ and $\mathcal {H}^{nh}(4)$ are large, as they contain a non-abelian free group of rank $2$.

Publisher

Oxford University Press (OUP)

Reference42 articles.

1. Property ${P}_{naive}$ for acylindrically hyperbolic groups;Abbott;Math. Z.,2019

2. Parabolic subgroups acting on the additional length graph;Antolín;Algebr. Geom. Topol.,2021

3. Normal forms of functions near degenerate critical points, the Weyl groups ${A}_k$, ${D}_k$, ${E}_k$ and Lagrangian singularities;Arnol’d;Funct. Anal. Appl.,1972

4. Horocycle dynamics: new invariants and Eigenform loci in the stratum $\mathcal {H}$(1,1);Bainbridge;Mem. Amer. Math. Soc.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3