Characterization of mutations in the reverse transcriptase region of hepatitis B virus in treated and untreated chronic hepatitis B patients

Author:

Zou Weihua1,Qian Fuchu23,Jin Fang23,Li Dongli23,Chen Jing23

Affiliation:

1. Department of Laboratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China

2. Department of Precision Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China

3. Huzhou Key Laboratory of Molecular Medicine, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China

Abstract

Abstract Background The reverse transcriptase (RT) region of the hepatitis B virus (HBV) is the target of antiviral treatment. However, the discrepancy in RT mutations between nucleos(t)ide analogue (NA)-treated and -untreated chronic hepatitis B (CHB) patients is un clear. Methods Serum samples were collected from 119 NA-treated and 135 NA-untreated patients. The sampling time was decided by the clinician. Full-length HBV RT regions were amplified using nest polymerase chain reaction. The mutations within the RT region were analysed by direct sequencing. Results The incidence of RT mutations in treated patients was higher than that in untreated patients (p<0.05). The classic drug-resistant mutations were detected in 44.5% (53/119) of treated patients, which was significantly higher than in untreated patients (6.7% [9/135]) (p<0.05). The non-classical mutations showed their complexity and diversity in both patient groups. Multiple mutations (three or more) were more frequent in treated patients than in untreated patients (p<0.05). Several novel mutations might be related to NA resistance. Conclusions The selection pressures of NAs accelerated the development of RT mutations, especially within the functional domain. Mutations in the RT region occurred not only at classical sites, but also at other non-classical sites, which might be related to drug resistance and/or viral replication. The biological function and fitness of HBV isolates harbouring these novel mutations need further in vitro and in vivo verification experiments.

Funder

Foundation Project for Science and Technology of Huzhou City

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3