miR-92a-1-p5 Modulated Expression of the flightin Gene Regulates Flight Muscle Formation and Wing Extension in the Pea Aphid, Acyrthosiphon pisum (Hemiptera: Aphidoidea)

Author:

Chang Meiling1,Cheng Hao1,Cai Zhiyan1,Qian Yuxin1,Zhang Kun1,Yang Linlin1,Ma Na1,Li Dandan1ORCID

Affiliation:

1. Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University , 1638 Wolong Road, Nanyang, Henan 473061 , China

Abstract

Abstract Aphids exhibit wing polyphenism. Winged and wingless aphid morphs are produced by parthenogenesis depending on population density and host plant quality. Recent studies showed that microRNAs in alate and apterous individuals have differential expression and are involved in wing dimorphism of Acyrthosiphon pisum. From which miR-92a-1-p5 can target the mRNA of flight muscle gene flightin in vitro, but what effect they have on wing development of aphid is unclear. Here with the nanocarrier-delivered RNA interference (RNAi) method, flightin gene was knocked down in winged nymphs of A. pisum. Results showed that the majority (63.33%) of adults had malformed wings, the shape of dorsal longitudinal muscle (DLM) was deformed severely, the dorsoventral flight muscle (DVM) became wider and looser in aphids with flightin reduction compared with the negative control. Overexpression of miR-92a-1-p5 caused decreased expression of flightin and malformed wings of aphids, with a mutant ratio of 62.50%. Morphological analysis of flight musculature showed the consistent result as that with flightin knockdown. These results suggest that flightin is essential for flight musculature formation and wing extension in A. pisum, which can be modulated by miR-92a-1-p5.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Young Elite Scientist Sponsorship Program by China Association for Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3