Occurrence, Density, and Transcriptomic Response of the Leafhopper Erythroneura sudra (Hemiptera: Cicadellidae) When Confronted With Different Fruit Tree Species

Author:

Wang Yueyue1,Huang Xunbing1ORCID,Li Hui1,Chen Guangyan1

Affiliation:

1. Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University , Linyi , P.R. China

Abstract

Abstract The leafhopper, Erythroneura sudra (Distant) is becoming a dominant insect pest, and usually can cause significant damage to fruit production in northern China. We studied the occurrence and density of E. sudra on three fruit tree species and its transcriptomic responses when it was fed on leaves of these tree species. A higher density and survival rate of E. sudra were recorded when it fed on leaves of peach (Amygdalus persica L.) (Rosales: Rosaceae) and cherry (Cerasus pseudocerasus Lindl) (Rosales: Rosaceae) than on apple (Malus domestica Mill) (Rosales: Rosaceae). Also, feeding on M. domestica induced the largest variation in transcriptomic profiles in E. sudra. In total, 166 genes were differentially expressed (89 upregulated and 77 downregulated) in E. sudra when it fed on M. domestica, compared to when it fed on the other two tree species. The upregulated genes were mainly related to ‘response to oxidative stress’, ‘stress-resistance’, and ‘xenobiotic metabolic process’. The downregulated genes were mainly related to ‘structural constituent of cuticle’, ‘biosynthetic process’, and ‘development regulation’. These results suggested that M. domestica significantly changed the expression of many genes and consequently caused lower occurrence and density of E. sudra. Such information could enhance our understanding of the leafhopper–host plant relationship. Additionally, it can contribute to the improvement of current control strategies for this pest.

Funder

Shandong Provincial Department of Agriculture and Rural Affairs

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3