Population genetic diversity and structure of Tephritis angustipennis and Campiglossa loewiana (Diptera: Tephritidae) based on COI DNA barcodes in the three-river source region, China

Author:

Zhang Li-Jun1ORCID,Liu Ying1ORCID,Wang Yan-Long1,Xie Le-Le1,Wang Xin-You1,Ma Yu-Shou1ORCID

Affiliation:

1. Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University , Xining, Qinghai , China

Abstract

Abstract Tephritis angustipennis (Diptera: Tephritidae) and Campiglossa loewiana (Diptera: Tephritidae) are phytophagous pests in China. Their damage has significantly impacted the collection and cultivation of germplasm resources of native Asteraceae plants. However, the genetic characteristics and structure of their population are unclear. This study focused on the highly damaging species of T. angustipennis and C. loewiana collected from the three-river source region (TRSR). We amplified the mitochondrial cytochrome C oxidase subunit I (mtCOI) gene sequences of these pests collected from this area and compared them with COI sequences from GenBank. We also analyzed their genetic diversity and structure. In T. angustipennis, 5 haplotypes were identified from 5 geographic locations; the genetic differentiation between France population FRPY (from Nylandia, Uusimaa) and China populations GLJZ (from Dehe Longwa Village, Maqin County), GLDR (from Zhique Village, Dari County), and GLMQ (from Rijin Village, Maqin County) was the strongest. GLJZ exhibited strong genetic differentiation from GLDR and GLMQ, with relatively low gene flow. For C. loewiana, 11 haplotypes were identified from 5 geographic locations; the genetic differentiation between the Chinese population GLMQ-YY (from Yangyu Forest Farm, Maqin County) and Finnish population FDNL (from Nylandia, Uusimaa) was the strongest, with relatively low gene flow, possibly due to geographical barriers in the Qinghai–Tibet plateau. Only 1 haplotype was identified across GLDR, GLMQ, and GLBM. High gene flow between distant locations indicates that human activities or wind dispersal may facilitate the dispersal of fruit flies and across different geographic. Geostatistical analysis suggested a recent population expansion of these 2 species in TRSR. Our findings provide technical references for identifying pests in the TRSR region and theoretical support for managing resistance, monitoring pest occurrences, analyzing environmental adaptability, and formulating biological control strategies for Tephritidae pests on Asteraceae plants.

Funder

Qinghai Science and Technology Department

Publisher

Oxford University Press (OUP)

Reference85 articles.

1. Theoretical-analysis of ecologo-genetic structure of populations and communities.1. The construction of dynamics equations of ecologo-genetic populations structure;Abrosov;Genetika,1985

2. Fruit Flies (Tephritidae)

3. Bactrocera dorsalis females attracted to their eggs for further oviposition;Ao;Chin. J. Biol. Control,2023

4. Median-joining networks for inferring intraspecific phylogenies;Bandelt;Mol. Biol. Evol,1999

5. Genomic determinants potentially associated with clinical manifestations of human-pathogenic tick-borne flaviviruses;Bondaryuk;Int. J. Mol. Sci,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3