Affiliation:
1. Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
Abstract
Abstract
The mitochondrial genome sequences of Denierella emmerichi, Epicauta curvispina, and Meloe poggii were determined. Their mitochondrial genomes were found to contain 37 genes (13 protein-coding genes [PCGs], 22 tRNA genes, and 2 rRNAs), of which 4 PCGs, 8 tRNA genes, and 2 rRNAs are encoded by the N-strand, and the remaining genes are encoded by the J-strand. The mitochondrial genomes of D. emmerichi, E. curvispina, and M. poggii are 15,702 bp, 15,813 bp, and 15,626 bp in length, respectively, and their guanine–cytosine contents are 28%, 33%, and 36%, respectively. The 13 PCGs of D. emmerichi, E. curvispina, and M. poggii use ATN as the standard start codon and TAA, TAG, and T as the stop codons. The Bayesian inference and maximum likelihood phylogenetic analysis results based on the 13 PCGs and 13 PCGs + 2rRNAs datasets of the mitochondrial genomes of the Meloidae support Epicauta (Coleoptera: Meloidae) ([D. emmerichi, E. curvispina, E. ruficeps, E. aptera] + [E. chinensis, E. impressicornis, E. gorhami, E. tibialis]). We believe that this research enriches the literature on the mitochondrial genomics of Meloidae and serves as a foundation for the further study of the phylogenetic relationships and characterization of Meloidae and Coleoptera.
Funder
National Natural Science Foundation of China
Program of Science and Technology Innovation Talents Team, Guizhou Province, China
Program of Excellent Innovation Talents, Guizhou Province, China
Publisher
Oxford University Press (OUP)
Subject
Insect Science,General Medicine