Genome-Wide Identification and Expression Profiling of theWntGene Family in Three Rice Planthoppers:Sogatella furcifera,Laodelphax striatellus, andNilaparvata lugens

Author:

Peng Lei1ORCID,Zhao Yan2

Affiliation:

1. College of Life Science, Guizhou Normal University , Guiyang , China

2. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China

Abstract

AbstractThe Wnt gene family plays essential roles in regulating many developmental processes, including the maintenance of stem cells, cell division, and cell migration. The number of Wnt genes varies among species. Due to the diversity and importance of their functions, the Wnt gene family has gained extensive research interest in various animal species from invertebrates to vertebrates. However, knowledge of the Wnt gene family is limited in rice planthoppers. Three planthopper species, the white-backed planthopper (Sogatella furcifera Horvath), the small brown planthopper (Laodelphax striatellus Fallén) and the brown planthopper (Nilaparvata lugens Stål) (Hemiptera: Delphacidae), are devastating specialist pests of rice and cause serious damage to rice plants. To better study the evolution and function of the Wnt gene family in rice planthoppers, we identified 8 Wnt family genes in three rice planthoppers with both genomic and extensive transcriptomic resources available. We conducted a systematic analysis of the three kinds of rice planthoppers and analyzed the dynamic patterns of gene conservation, as well as Wnt gene loss and duplication. The expression profiles in different developmental stages of S. furcifera and different adult organs and tissues of L. striatellus provide preliminary functional implications for the Wnt genes in rice planthopper. This study presents the first genome-wide study of the Wnt gene family in rice planthoppers, and our findings provide insights into Wnt function and evolution in rice planthoppers.

Funder

Joint Fund of Guizhou Science and Technology Foundation

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3