Measuring factors affecting honey bee (Hymenoptera: Apidae) attraction to soybeans using bioacoustics monitoring

Author:

Forrester Karlan C1ORCID,Lin Chia-Hua1ORCID,Johnson Reed M1ORCID

Affiliation:

1. Department of Entomology, The Ohio State University , 1680 Madison Ave, Wooster, OH 44691 , USA

Abstract

Abstract Soybean (Glycine max (L.) Merr.) is an important agricultural crop around the world, and previous studies suggest that honey bees (Apis mellifera Linnaeus) can be a component for optimizing soybean production through pollination. Determining when bees are present in soybean fields is critical for assessing pollination activity and identifying periods when bees are absent so that bee-toxic pesticides may be applied. There are currently several methods for detecting pollinator activity, but these existing methods have substantial limitations, including the bias of pan trappings against large bees and the limited duration of observation possible using manual techniques. This study aimed to develop a new method for detecting honey bees in soybean fields using bioacoustics monitoring. Microphones were placed in soybean fields to record the audible wingbeats of foraging bees. Foraging activity was identified using the wingbeat frequency of honey bees (234 ± 14 Hz) through a combination of algorithmic and manual approaches. A total of 243 honey bees were detected over 10 days of recording in 4 soybean fields. Bee activity was significantly greater in blooming fields than in non-blooming fields. Temperature had no significant effect on bee activity, but bee activity differed significantly between soybean varieties, suggesting that soybean attractiveness to honey bees is heavily dependent on varietal characteristics. Refinement of bioacoustics methods, particularly through the incorporation of machine learning, could provide a practical tool for measuring the activity of honey bees and other flying insects in soybeans as well as other crops and ecosystems.

Funder

Agriculture and Food Research Initiative of the US Department of Agriculture’s National Institute of Food and Agriculture

Ohio Agricultural Research and Development Center’s North Central Soybean Research Program

Publisher

Oxford University Press (OUP)

Reference73 articles.

1. Yields and cross-pollination of soybeans as affected by honey bees and Alfalfa Leafcutting bees;Abrams;Am Bee J,1978

2. Impact of the foraging activity of Apis mellifera adansonii Latreille (Hymenoptera: Apidae) and Bradyrhizobium fertilizer on pollination and yield components of Glycine max L. (Fabaceae) in the field;BeaudelaineKengni;Int J Biol Res,2015

3. Varietal differences and morphology of Cleistogamy in soybean;Benitez;Crop Sci,2010

4. Contribution of honeybees to soybean yield;Blettler,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3