Affiliation:
1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University , Nanjing 210037 , China
2. College of Forestry, Nanjing Forestry University , Nanjing 210037 , China
Abstract
AbstractHyphantria cunea Drury (Lepidoptera: Erebidae) is a quarantine pest in China that can cause damage to hundreds of plants. As biological control agents, Nuclear Polyhedrosis Virus (NPV) and Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt) are commonly used to inhibit the prevalence of H. cunea. To investigate the role of midgut bacteria in the infection of NPV and Bt in H. cunea, we performed a series of tests, including isolating the dominant culturable bacteria in the midgut, eliminating intestinal bacteria, and respectively inoculating the dominant strains with NPV and Bt for bioassay. Two dominant bacteria, Klebsiella oxytoca Lautrop (Enterobacterales: Enterobacteriaceae) and Enterococcus mundtii Collins (Lactobacillales: Enterococcaceae), in the midgut of H. cunea were identified, and a strain of H. cunea larvae without intestinal bacteria was successfully established. In the bioassays of entomopathogen infection, K. oxytoca showed significant synergistic effects with both NPV and Bt on the death of H. cunea. In contrast, E. mundtii played antagonistic effects. This phenomenon may be attributed to the differences in the physico-chemical properties of the two gut bacteria and the alkaline environment required for NPV and Bt to infect the host. It is worth noting that the enhanced insecticidal activity of K. oxytoca on NPV and Bt provides a reference for future biological control of H. cunea by intestinal bacteria.
Funder
Forestry Science and Technology Innovation and Promotion Project in Jiangsu Province
Special Fund for Scientific Research of Shanghai Landscaping & City Appearance Administrative Bureau
Publisher
Oxford University Press (OUP)
Subject
Insect Science,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献