Chemosystematics Using Cuticular Compounds: A Powerful Tool to Separate Species in Mediterranean Dung Beetles (Coleoptera: Geotrupidae)

Author:

Niogret Jerome123ORCID,Felix Anne-Emmanuelle23,Nicot Antoine23,Lumaret Jean-Pierre23

Affiliation:

1. Niogret Ecology Consulting LLC, Miami, FL

2. Laboratoire de Zoogéographie, UMR 5175 CEFE, Université Paul-Valéry Montpellier, Route de Mende, Montpellier Cedex, France

3. Centre d’Ecologie Fonctionnelle and Evolutive, UMR 5175 CEFE, Montpellier Cedex, France

Abstract

Abstract The use of chemical characters to infer a phylogeny is known to be promising to ascertain phylogenetic relationships in controversial groups. Dung beetle classifications containing the Geotrupidae family, based on morphological characters and genes, are debated with respect to the subfamilies, such as the Bolboceratids. In our study, we used different approaches to generate and compare the Geotrupidae phylogenies based on genetics and chemotaxonomy. Cuticular compounds were analyzed for 12 species of Mediterranean dung beetles to build a chemical phylogeny. In addition, mitochondrial and nuclear marker concatenation have been used to elaborate the molecular phylogeny. Using the cuticular compound continuous data, our results showed that each species was associated with a specific chemical pattern and that all individuals belonging to the same species displayed a similar chemical blend. The most distant species was Bolbelasmus gallicus, with an evident distinction from the other species due to several compounds. The maximum parsimony tree showed that all genera belonging to a Geotrupidae subfamily were grouped in the same clade, with B. gallicus species isolated in another clade, similar to the chemotaxonomy grouping. A strong positive correlation between chemotaxonomy and genetic phylogeny has been demonstrated, underlying a genetic basis for cuticular hydrocarbon variations. Our results are congruent with previous studies using morphological or genetic data. Our results also showed that only 10 compounds can be used to distinguish at least six species of dung beetle and that chemotaxonomy could become a useful and affordable tool to determine phylogenetic relationships in insects.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3