Characterization and Developmental Expression Patterns of Four Hexamerin Genes in the Bumble Bee, Bombus terrestris (Hymenoptera: Apidae)

Author:

Tian Yakai12ORCID,Qu Yingping1,Dong Kun2,He Shaoyu2,Jie Wu1,Huang Jiaxing1

Affiliation:

1. Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China

2. College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China

Abstract

Abstract Hexamerins are members of the hemocyanin superfamily and play essential roles in providing amino acids and energy for the nonfeeding stages of insects. In this study, we cloned and analyzed the expression patterns of four hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) at different worker development stages and queen diapause statuses in the bumble bee, Bombus terrestris. The results of this study showed that hex 110 has the longest open reading frame (ORF; 3,297 bp) compared to the ORFs of hex 70a (2,034 bp), hex 70b (2,067 bp), and hex 70c (2,055 bp). The putative translation product of Hex 70a, Hex 70b, Hex70c, and Hex 110 has 677, 688, 684, and 1,098aa with predicted molecular mass of 81.13, 79.69, 81.58, and 119 kDa. In the development stages of workers, the expression levels of hex 70a, hex 70b, and hex 70c increased gradually from the larval stage and exhibited high expression levels at the pink eyed and brown eyed pupae stage, whereas hex 110 exhibited the highest expression level at the larval period. Four hexamerin genes were highly expressed at the prediapause status of queen (P < 0.05), and compared to the eclosion queen, the lowest upregulation was 3.7-fold, and the highest upregulation was 1,742-fold. The expression levels of hex 70b, hex 70c, and hex 110 at diapause were significantly higher than those at postdiapause (P < 0.05). In conclusion, hexamerins may play important roles in queen diapause and metamorphosis of larval and pupal stages.

Funder

China Agriculture Research System

Agricultural Science and Technology Innovation Program

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3