Regulation of Hormone-Related Genes in Ericerus pela (Hemiptera: Coccidae) for Dimorphic Metamorphosis

Author:

Pengfei Liu12,Weiwei Wang1,Xiaofei Ling1,Qin Lu1,Jinwen Zhang1,Rui He13,Hang Chen13

Affiliation:

1. Research Institute of Resources Insect, Chinese Academy of Forestry, Kunming, China

2. NanJing Forestry University, Nanjing, China

3. The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China

Abstract

Abstract Insect hormones regulate metamorphosis including that leading to sexual dimorphism. Using RNA-Seq, we discovered that the second-instar male larva (SM) of the white wax insect, Ericerus pela, have 5,968 and 8,620 differentially expressed transcripts compared with the second-instar female larva (SF) and the first-instar male larva (FM), respectively. The expression levels of genes involved in the apoptosis of old tissues and the reconstruction of new ones in the SM significantly enhanced, while the SF mainly has enhanced expression levels of anabolic genes such as chitin. We predicted that the second-instar larvae are the developmental origin of sexual dimorphic metamorphosis. Meanwhile, in the juvenile hormone (JH) metabolic pathway, CYP15A1 and JH esterase (JHE) are differentially expressed; and in the 20-hydroxyecdysone (20E) metabolic pathway, CYP307A1, CYP314A1, and CYP18A1 are differentially expressed. In the SM, the expression levels of CYP307A1 and CYP314A1 are significantly increased, whereas the expression level of CYP18A1 is significantly decreased; in the SF, the expression levels of the above genes are opposite to that of the SM. Expression trends of RNA-seq is consistent with the expression level of qRT–PCR, and seven of them are highly correlated (R ≥ 0.610) and four are moderately correlated (0.588 ≥ R ≥ 0.542).

Funder

Introduction Project of International Advanced Technology of Forestry

National Natural Science Foundation of China

Fundamental Research Funds for Central Non-profit Research Institution

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3