Evaluation of the DynaTrap Flylight (DT-3009) Against House Flies and Stable Flies (Diptera: Muscidae) Under Indoor Conditions

Author:

Hogsette Jerome A1ORCID,Cilek James E2

Affiliation:

1. USDA–ARS, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL

2. Testing and Evaluation Department, Navy Entomology Center of Excellence, Jacksonville, FL

Abstract

Abstract Ultraviolet light traps are commonly used to manage house flies in indoor situations. Many indoor traps are longer than their 46-cm fluorescent tubes and have glue boards to capture attracted flies. Smaller traps have been sold to use in homes and small rooms, but few if any trap evaluations can be found in the literature. One trap, the DynaTrap Flylight DT-3009 (DTFL) has become quite common and a performance evaluation between it and an open-front commercial trap seemed warranted. Evaluations were conducted at the USDA-ARS-CMAVE laboratory in Gainesville, FL. The DTFL and the Gardner GT-200 open-front trap were evaluated individually and then in pairs. Traps were placed approximately 90 cm above the floor at the edge of a 2.4- × 0.76-m wide counter. Traps tested individually were centered on the long axis of the counter. For paired tests, traps were placed approximately 2.1 m apart. Fifty mixed-sex, 3- to 5-d-old house or stable flies were released and counts of captured flies were made after 1, 4, and 24 h. In individual tests, the DTFL and the GT-200 captured 38 and 76% of the house flies, respectively, and 3 and 18% of the stable flies, respectively, after 4 h. At 4 h in paired tests, the DTFL and the GT-200 captured 3 and 66% of the house flies, respectively, and 2 and 16% of the stable flies, respectively. Depending on the intended use, either trap was considered efficacious in capturing house flies when used alone. Differences in trap performance are discussed.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

Reference10 articles.

1. New diets for production of house flies and stable flies (Diptera: Muscidae) in the laboratory;Hogsette;J. Econ. Entomol,1992

2. Ultraviolet light traps: design affects attraction and capture,;Hogsette,2008

3. Turning ultraviolet light traps on and off increases their attraction to house flies (Diptera: Muscidae);Hogsette;J. Insect Sci,2019

4. Operational testing of electrocutor traps for fly control in dining facilities;Lillie;J. Econ. Entomol,1987

5. Comparison of traps and an integrated program to manage house flies and stable flies on dairy farms;Miller;J. Agric. Entomol,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3