Mechanism of elastic energy storage of honey bee abdominal muscles under stress relaxation

Author:

Deng Zhizhong1,Zhang Yuling1,Yan Shaoze1ORCID

Affiliation:

1. Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University , Beijing 100084 , PR China

Abstract

Abstract Energy storage of passive muscles plays an important part in frequent activities of honey bee abdomens due to the muscle distribution and open circulatory system. However, the elastic energy and mechanical properties of structure in passive muscles remain unclear. In this article, stress relaxation tests on passive muscles from the terga of the honey bee abdomens were performed under different concentrations of blebbistatin and motion parameters. In stress relaxation, the load drop with the rapid and slow stages depending on stretching velocity and stretching length reflects the features of myosin–titin series structure and cross-bridge–actin cyclic connections in muscles. Then a model with 2 parallel modules based on the 2 feature structures in muscles was thus developed. The model described the stress relaxation and stretching of passive muscles from honey bee abdomen well for a good fitting in stress relaxation and verification in loading process. In addition, the stiffness change of cross-bridge under different concentrations of blebbistatin is obtained from the model. We derived the elastic deformation of cross-bridge and the partial derivatives of energy expressions on motion parameters from this model, which accorded the experimental results. This model reveals the mechanism of passive muscles from honey bee abdomens suggesting that the temporary energy storage of cross-bridge in terga muscles under abdomen bending provides potential energy for springback during the periodic abdomen bending of honey bee or other arthropod insects. The finding also provides an experimental and theoretical basis for the novel microstructure and material design of bionic muscle.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3