Affiliation:
1. College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province, P.R. China
2. Department of Entomology, China Agricultural University, Beijing, P.R. China
Abstract
Abstract
Fall armyworm, Spodoptera frugiperda (Smith), has caused significant losses for crop production in China. The fall armyworm is mainly controlled by the chemical insecticides, whereas the frequent application of insecticides would result in the resistance development. Insect cytochrome P450 monooxygenases play an essential part in the detoxification of insecticides. In this study, five P450 genes were selected to determine the role in response to insecticides by RNA interference (RNAi). Developmental expression pattern analysis revealed that S. frugiperda CYP321A8, CYP321A9, and CYP321B1 were highest in second-instar larvae among developmental stages, with 2.04-, 3.39-, and 8.58-fold compared with eggs, whereas CYP337B5 and CYP6AE44 were highest in adult stage, with 16.3- and 10.6-fold in comparison of eggs, respectively. Tissue-specific expression pattern analysis exhibited that CYP321A8, CYP321B1, and CYP6AE44 were highest in the midguts, with 3.56-, 3.33-, and 3.04-fold compared with heads, whereas CYP321A9 and CYP337B5 were highest in wings, with 3.07- and 3.36-fold compared with heads, respectively. RNAi was also conducted to explore detoxification effects of the five P450 genes on chlorantraniliprole. The second-instar larvae became more sensitive to chlorantraniliprole with a higher mortality rate than the control, after silencing CYP321A8, CYP321A9, and CYP321B1, respectively. These findings strongly supported our viewpoint that CYP321A8, CYP321A9, and CYP321B1 may play a critical role in insecticide detoxification. It will provide a basis for further study on regulation of P450 genes and the management of S. frugiperda.
Funder
National Key Research and Development Program of China
Project of Plant Protection Key Discipline of Henan Province
Bai Nong Ying Cai Innovation Program for College Students
Publisher
Oxford University Press (OUP)
Subject
Insect Science,General Medicine
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献