The Modulation of Trehalose Metabolism by 20-Hydroxyecdysone in Antheraea pernyi (Lepidoptera: Saturniidae) During its Diapause Termination and Post-Termination Period

Author:

Li Ya-Na1,Liu Yu-Bo2,Xie Xue-Qin2,Zhang Jia-Ning2,Li Wen-Li2

Affiliation:

1. School of Bioengineering, Dalian University of Technology, Dalian, China

2. School of Life Science and Medicine, Dalian University of Technology, Panjin, China

Abstract

Abstract Trehalose plays a crucial role in the diapause process of many insects, serving as an energy source and a stress protectant. Trehalose accumulation has been reported in diapause pupae of Antheraea pernyi; however, trehalose metabolic regulatory mechanisms associated with diapause termination remain unclear. Here, we showed that the enhanced trehalose catabolism was associated with an increase in endogenous 20-hydroxyecdysone (20E) in hemolymph of A. pernyi pupae during their diapause termination and posttermination period. Injection of 20E increased the mRNA level of trehalase 1A (ApTre-1A) and trehalase 2 (ApTre-2) of A. pernyi diapause pupae in a dose-dependent manner but did not affect the mRNA level of trehalase 1B (ApTre-1B). Meanwhile, exogenous 20E increased the enzyme activities of soluble and membrane-bound trehalase, leading to a decline in hemolymph trehalose. Conversely, the expression of ApTre-1A and ApTre-2 were down-regulated after the ecdysone receptor gene (ApEcRB1) was silenced by RNA interference or by injection of an ecdysone receptor antagonist cucurbitacin B (CucB), which inhibits the 20E pathway. Moreover, CucB treatment delayed adult emergence, which suggests that ApEcRB1 might be involved in regulating pupal-adult development of A. pernyi by mediating ApTre-1A and ApTre-2 expressions. This study provides an overview of the changes in the expression and activity of different trehalase enzymes in A. pernyi in response to 20E, confirming the important role of 20E in controlling trehalose catabolism during A. pernyi diapause termination and posttermination period.

Funder

Natural Science Foundation of China

Natural Science Foundation of Liaoning Province of China

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

Reference58 articles.

1. Glycosidase inhibitors: update and perspectives on practical use;Asano;Glycobiology,2003

2. Temporal control of puffing activity in polytene chromosomes;Ashburner;Cold Spring Harb. Symp. Quant. Biol,1974

3. The regulation of trehalose metabolism in insects;Becker;Experientia,1996

4. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis;Beckstead;Genome Biol,2005

5. The biological activities of ecdysteroids and ecdysteroid analogues, pp. 299–324. In;Bergamasco,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3