Affiliation:
1. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Abstract
Abstract
Graphene-based actuators featuring fast and reversible deformation under various external stimuli are promising for soft robotics. However, these bimorph actuators are incapable of complex and programmable 3D deformation, which limits their practical application. Here, inspired from the collective coupling and coordination of living cells, we fabricated a moisture-responsive graphene actuator swarm that has programmable shape-changing capability by programming the SU-8 patterns underneath. To get better control over the deformation, we fabricated SU-8 micropattern arrays with specific geometries and orientations on a continuous graphene oxide film, forming a swarm of bimorph actuators. In this way, predictable and complex deformations, including bending, twisting, coiling, asymmetric bending, 3D folding, and combinations of these, have been achieved due to the collective coupling and coordination of the actuator swarm. This work proposes a new way to program the deformation of bilayer actuators, expanding the capabilities of existing bimorph actuators for applications in various smart devices.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献