Development of a small animal model replicating core characteristics of takotsubo syndrome in humans

Author:

Zulfaj Ermir1,Nejat Amirali1,Espinosa Aaron Shekka1,Hussain Shafaat1ORCID,Haamid Abdulhussain2,Soliman Ahmed Elmahdy1,Kakaei Yalda1,Jha Abhishek1,Redfors Björn13ORCID,Omerovic Elmir13ORCID

Affiliation:

1. Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University , Bruna stråket 16, 413 45 Gothenburg , Sweden

2. Core Facilities—Experimental Biomedicine, Sahlgrenska Academy , Gothenburg , Sweden

3. Department of Cardiology, Sahlgrenska University Hospital , Gothenburg , Sweden

Abstract

Abstract Aims Adequate animal models are necessary to understand human conditions, such as takotsubo syndrome (TS) characterized by the heart's transient regional wall motion abnormalities. This study aims to develop a reproducible, low-mortality TS model that closely mimics the human condition and addresses the limitations of existing models. Methods and results We conducted six experiments using 309 Sprague Dawley rats, each approximately 300 g and aged 7–8 weeks. Initially, we replicated an established model using intraperitoneal isoprenaline injections. Subsequent experiments varied the doses and infusion durations of intravenous isoprenaline and assessed the effects of sex, strain, and breeder on the development of reversible akinetic segments. High-resolution echocardiography monitored the regional wall motion over 30 days to correlate with histological changes. Increasing the isoprenaline dose and the infusion time significantly enhanced akinesia (P < 0.01), resulting in pronounced apical ballooning observed in three-dimensional imaging. Akinesia peaked at 6 h post-infusion, with recovery observed at 24 h; most rats recovered from akinetic segments within 48–72 h. Optimizing the mode of administration, dose, and duration achieved a TS-like phenotype in 90% of cases, with a 16.7% mortality rate. Histological examinations confirmed that myocardial injury occurred, independent of apical ballooning. Conclusion This study presents a refined TS model that reliably replicates the syndrome's key features, including morphological and electrocardiographic changes, demonstrating its transient nature with high fidelity and reduced mortality. The model's reproducibility, evidenced by consistent results across trials, suggests its potential for broader application pending further validation.

Funder

Swedish Research Council

Swedish Heart-Lung Foundation

ALF

Swedish Society for Medical Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3