Three-dimensional bioprinting speeds up smart regenerative medicine

Author:

Gu Qi12,Zhu He1,Li Jing1,Li Xia1,Hao Jie1,Wallace Gordon G.2,Zhou Qi1

Affiliation:

1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

2. ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522, Australia

Abstract

Abstract Biological materials can actively participate in the formation of bioactive organs and can even control cell fate to form functional tissues that we name as the smart regenerative medicine (SRM). The SRM requires interdisciplinary efforts to finalize the pre-designed organs. Three-dimensional (3D) printing, as an additive manufacturing technology, has been widely used in various fields due to its high resolution and individuation. In SRM, with the assistance of 3D printing, cells and biomaterials could be precisely positioned to construct complicated tissues. This review summarizes the state of the SRM advances and focuses in particular on the 3D printing application in biofabrication. We further discuss the issues of SRM development and finally propose some approaches for future 3D printing, which involves SRM.

Funder

International S&T Cooperation Programme

National Basic Research Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3