CipherTrace: automatic detection of ciphers from execution traces to neutralize ransomware

Author:

Hassanin Mostafa AbdelMoez1ORCID,Martinovic Ivan1

Affiliation:

1. Department of Computer Science, University of Oxford , 7 Parks Rd, OX1 3QG , United Kingdom

Abstract

Abstract In 2021, the largest US pipeline system for refined oil products suffered a 6-day shutdown due to a ransomware attack [1]. In 2023, the sensitive systems of the US Marshals Service were attacked by a ransomware [2]. One of the most effective ways to fight ransomware is to extract the secret keys. The challenge of detecting and identifying cryptographic primitives has been around for over a decade. Many tools have been proposed, but the vast majority of them use templates or signatures, and their support for different operating systems and processor architectures is rather limited; neither have there been enough tools capable of extracting the secret keys. In this paper, we present CipherTrace, a generic and automated system to detect and identify the class of cipher algorithms in binary programs, and additionally, locate and extract the secret keys and cryptographic states accessed by the cipher. We focus on product ciphers, and evaluate CipherTrace using four standard cipher algorithms, four different hashing algorithms, and five of the most recent and popular ransomware specimens. Our results show that CipherTrace is capable of fully dissecting Fixed S-Box block ciphers (e.g. AES and Serpent) and can extract the secret keys and other cryptographic artefacts, regardless of the operating system, implementation, or input- or key-size, and without using signatures or templates. We show a significant improvement in performance and functionality compared to the closely related works. CipherTrace helps in fighting ransomware, and aids analysts in their malware analysis and reverse engineering efforts.

Publisher

Oxford University Press (OUP)

Reference52 articles.

1. Hackers breached colonial pipeline using compromised password;Turton,2021

2. US Marshals service still recovering from february ransomware attack affecting system used by fugitive hunters;Lyngaas,2023

3. Data Breach Investigations Report;Langlois,2020

4. 2021 ransomware statistics, data and trends;PurpleSec,2021

5. The State of Ransomware 2023;Sophos,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3