Identification of Genes That Result in High Mortality of Oryctes rhinoceros (Scarabaeidae: Coleoptera) When Targeted Using an RNA Interference Approach: Implications for Large Invasive Insects

Author:

Watanabe Shizu1,Adams Brandi-Leigh1,Kong Alexandra1,Masang Nelson1,Vowell Tomie1,Melzer MichaelORCID

Affiliation:

1. Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI

Abstract

Abstract Coconut rhinoceros beetle, Oryctes rhinoceros (L., 1758), is a large scarab beetle native to Southeast Asia and a major pest of coconut (Cocos nucifera) and oil (Elaeis guineensis) palms in its invaded range. Few tools are available for coconut rhinoceros beetle management, particularly for an emerging haplotype with resistance to known strains of Oryctes rhinoceros nudivirus, the traditional biological control agent used in coconut rhinoceros beetle management programs. RNA interference (RNAi) represents an emerging tool for insect pest control that exploits an existing pathway for gene regulation in the target organism. In this study, we evaluated RNAi as a potential tool for coconut rhinoceros beetle management. Using transcriptome data generated from gut tissue of early instar larvae, we identified 24 RNAi target sequences that were either highly expressed or had demonstrated efficacy in other insect systems. Double-stranded (ds)RNAs ranging from 249 to 297 bp in length were generated for 23 of these target sequences and 150 ng were microinjected into coconut rhinoceros beetle 1st, 2nd, and 3rd instar larvae and adults. Five of these dsRNAs that targeted genes putatively encoding V-type ATPase, polyadenylate binding protein, and three forms of actin induced 30.8–100% mortality within 14 days post injection (dpi). Microinjection of 2nd instars with 10 and 100 ng of these same five dsRNAs induced 20–100% and 80–100% mortality at 7 and 14 dpi, respectively. These results indicate RNAi should be explored as a possible management option for coconut rhinoceros beetle. Coconut rhinoceros beetle may also represent a model species for using RNAi in the management of large invasive insect species.

Funder

United States Department of Agriculture’s Animal and Plant Health Inspection Service

Hawaii Invasive Species Council and USDA-NIFA

Publisher

Oxford University Press (OUP)

Subject

Insect Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3