Effect of Hypoxia on Embryo Development in Silkworm Eggs

Author:

Gong Jing1,Zhang Yuhao1,Yan Jiamin1,Shang Shan1,Gu Hanfei1,Zhu Yong

Affiliation:

1. State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China

Abstract

Abstract Diapause is a common phenomenon during which organisms suspend development to overcome difficult environmental conditions. The silkworm is a classical model for the study of egg diapause. Our previous study showed that gene expression is similar in silkworm eggs treated with hyperoxia or HCl. In the present study, to further explore the mechanism of diapause prevention, nondiapause eggs and hyperoxia-/HCl-activated diapause eggs were treated with hypoxia. Embryo morphology, hatching time, and reactive oxygen species (ROS) levels were analyzed across different developmental stages. The results showed that hypoxia may inhibit the embryonic development of silkworm eggs. The morphology of nondiapause eggs under hypoxia differed from that of nondiapause eggs under normoxia during embryonic development, which, in turn, was similar to that of diapause eggs. Meanwhile, the hatching time of nondiapause eggs under hypoxia was delayed significantly. Moreover, the ROS levels of nondiapause eggs changed under hypoxia, showing a pattern similar to that of diapause eggs. Interestingly, when activated diapause eggs were treated with hypoxia, some eggs hatched in the following spring. These results suggest that early embryogenesis is largely dependent on oxygen levels and that hypoxia may induce a diapause-like state in activated diapause eggs. Additionally, ROS levels may play a key role in diapause. Thus, this study provides valuable information on the mechanisms of diapause and diapause prevention in silkworms.

Funder

National Natural Science Foundation of China

Chongqing Basic and Frontier Research Project

Publisher

Oxford University Press (OUP)

Subject

Insect Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3