Differential RNA aptamer affinity profiling on plasma as a potential diagnostic tool for bladder cancer

Author:

Fjelstrup Søren1,Dupont Daniel M1,Bus Claus1,Enghild Jan J2,Jensen Jørgen B34,Birkenkamp-Demtröder Karin54,Dyrskjøt Lars54,Kjems Jørgen12ORCID

Affiliation:

1. Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark

2. Department of Molecular Biology and Genetics (MBG), Aarhus University , Aarhus, Denmark

3. Department of Urology, Aarhus University Hospital , Aarhus N, Denmark

4. Department of Clinical medicine, Aarhus University , Aarhus, Denmark

5. Department of Molecular Medicine, Aarhus University Hospital , Aarhus, Denmark

Abstract

Abstract The molecular composition of blood is a signature of human health, reflected in the thousands of blood biomarkers known for human diseases. However, establishing robust disease markers is challenging due to the diversity of individual samples. New sequencing methods have simplified biomarker discovery for circulating DNA and RNA while protein profiling is still laborious and costly. To harness the power of high-throughput sequencing to profile the protein content of a biological sample, we developed a method termed APTASHAPE that uses oligonucleotide aptamers to recognize proteins in complex biofluids. We selected a large pool of 2′Fluoro protected RNA sequences to recognize proteins in human plasma and identified a set of 33 cancer-specific aptamers. Differential enrichment of these aptamers after selection against 1 μl of plasma from individual patients allowed us to differentiate between healthy controls and bladder cancer-diagnosed patients (91% accuracy) and between early non-invasive tumors and late stage tumors (83% accuracy). Affinity purification and mass spectrometry of proteins bound to the predictive aptamers showed the main target proteins to be C4b-binding protein, Complement C3, Fibrinogen, Complement factor H and IgG. The APTASHAPE method thus provides a general, automated and highly sensitive platform for discovering potential new disease biomarkers.

Funder

Carlsberg Foundation

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3