Recent advancements in the structural biology of human telomerase and their implications for improved design of cancer therapeutics

Author:

Welfer Griffin A12,Freudenthal Bret D132ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City , KS  66160, USA

2. University of Kansas Cancer Center , Kansas City , KS  66160, USA

3. Department of Cancer Biology, University of Kansas Medical Center , Kansas City , KS  66160, USA

Abstract

Abstract Telomerase is a specialized reverse transcriptase that synthesizes telomeric repeats at the ends of linear chromosomes. Telomerase is transiently expressed in germ and stem cells, but nearly all somatic cells silence it after differentiating. However, the vast majority of cancer cells reactivate and constitutively express telomerase to maintain replicative immortality. Because of this, telomerase has remained a promising broad-spectrum chemotherapeutic target for over 30 years. However, various challenges associated with obtaining high-resolution structural data for telomerase have limited the development of rationally designed structure-based therapeutics. Various techniques and model systems have been utilized to advance our understanding of the structural biology of telomerase. In particular, multiple high-resolution cryogenic electron microscopy (cryo-EM) structures published within the past few years have revealed new components of the telomerase complex with near atomic resolution structural models. Additionally, these structures have provided details for how telomerase is recruited to telomeres and its mechanism of telomere synthesis. With these new pieces of evidence, and the promising outlook for future refinements to our current models, the possibility of telomerase specific chemotherapeutics is becoming more tangible than ever. This review summarizes these recent advancements and outlines outstanding questions in the field.

Funder

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3