Therapeutic disruption of RAD52–ssDNA complexation via novel drug-like inhibitors

Author:

Bhat Divya S1,Malacaria Eva2,Biagi Ludovica Di2,Razzaghi Mortezaali1,Honda Masayoshi1,Hobbs Kathryn F13,Hengel Sarah R1,Pichierri Pietro2ORCID,Spies M Ashley134,Spies Maria1ORCID

Affiliation:

1. Department of Biochemistry, University of Iowa Carver College of Medicine , 51 Newton Road , Iowa City , IA  52242 , USA

2. Mechanisms, Biomarkers and Models Section, Department of Environment and Health, Istituto Superiore di Sanità , Viale Regina Elena 299, 00161  Rome , Italy

3. Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City , IA  52242, USA

4. Naturis Informatika LLC , 401 Mullin Ave., Iowa City , IA  52246, USA

Abstract

AbstractRAD52 protein is a coveted target for anticancer drug discovery. Similar to poly-ADP-ribose polymerase (PARP) inhibitors, pharmacological inhibition of RAD52 is synthetically lethal with defects in genome caretakers BRCA1 and BRCA2 (∼25% of breast and ovarian cancers). Emerging structure activity relationships for RAD52 are complex, making it challenging to transform previously identified disruptors of the RAD52–ssDNA interaction into drug-like leads using traditional medicinal chemistry approaches. Using pharmacophoric informatics on the RAD52 complexation by epigallocatechin (EGC), and the Enamine in silico REAL database, we identified six distinct chemical scaffolds that occupy the same physical space on RAD52 as EGC. All six were RAD52 inhibitors (IC50 ∼23–1200 μM) with two of the compounds (Z56 and Z99) selectively killing BRCA-mutant cells and inhibiting cellular activities of RAD52 at micromolar inhibitor concentrations. While Z56 had no effect on the ssDNA-binding protein RPA and was toxic to BRCA-mutant cells only, Z99 inhibited both proteins and displayed toxicity towards BRCA-complemented cells. Optimization of the Z99 scaffold resulted in a set of more powerful and selective inhibitors (IC50 ∼1.3–8 μM), which were only toxic to BRCA-mutant cells. RAD52 complexation by Z56, Z99 and its more specific derivatives provide a roadmap for next generation of cancer therapeutics.

Funder

National Institutes of Health

University of Iowa Center for Biocatalysis and Bioprocessing

NIH-sponsored Predoctoral Training Program in Biotechnology

Free Radicals and Radiation Biology

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3