Dynamical non-Gaussian modelling of spatial processes

Author:

Fonseca Thaís C O1ORCID,Lobo Viviana G R1ORCID,Schmidt Alexandra M2ORCID

Affiliation:

1. Instituto de Matemática, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil

2. Department of Epidemiology, Biostatistics and Occupational Health, McGill University , Montreal, Quebec , Canada

Abstract

AbstractEnvironmental data are often assumed to follow a spatio-temporal Gaussian process, possibly after transformation. However, heterogeneity might have a pattern not accommodated by transformation and modelling the variance laws is an appealing alternative. This work extends the multivariate dynamic Gaussian model by defining the process as a scale mixture with the scale depending on covariates. State-space equations define the temporal dynamics, resulting in feasible inference and prediction. Various simulations studies show that the parameters are identifiable and our proposal recovers simpler structures. The analyses of temperature and ozone illustrate the improvement in quantifying the uncertainty of predictions.

Funder

Natural Sciences and Engineering Research Council (NSERC) of Canada

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference38 articles.

1. A latent Gaussian Markov random field model for spatio-temporal rainfall disaggregation;Allcroft;Journal of the Royal Statistical Society: Series C (Applied Statistics),2003

2. Non-Gaussian geostatistical modeling using (skew) t processes;Bevilacqua;Scandinavian Journal of Statistics,2020

3. Accounting for covariate information in the scale component of spatial-temporal mixing models;Bueno;Spatial Statistics,2017

4. On Gibbs sampling for state space models;Carter;Biometrika,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3