CAViaR models for Value-at-Risk and Expected Shortfall with long range dependency features

Author:

Mitrodima Gelly1,Oberoi Jaideep2

Affiliation:

1. Department of Statistics, London School of Economics and Political Science , London WC2A 2AE , UK

2. School of Finance and Management, SOAS University of London , 10 Thornhaugh Street, Russell Square, London WC1H 0XG , UK

Abstract

Abstract We consider alternative specifications of conditional autoregressive quantile models to estimate Value-at-Risk and Expected Shortfall. The proposed specifications include a slow moving component in the quantile process, along with aggregate returns from heterogeneous horizons as regressors. Using data for 10 stock indices, we evaluate the performance of the models and find that the proposed features are useful in capturing tail dynamics better.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference39 articles.

1. Back-testing expected shortfall;Acerbi;Risk Magazine,2014

2. Stock returns and volatility: Pricing the short-run and long-run components of market risk;Adrian;The Journal of Finance,2008

3. Procyclical leverage and value-at-risk;Adrian;Review of Financial Studies,2014

4. Evaluating value-at-risk models with desk-level data;Berkowitz;Management Science,2011

5. Intraday LeBaron effects;Bianco;Proceedings of the National Academy of Sciences,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3