Estimating a brain network predictive of stress and genotype with supervised autoencoders

Author:

Talbot Austin1ORCID,Dunson David2,Dzirasa Kafui34567,Carlson David8910

Affiliation:

1. Pillar Biosciences Inc. , Natick, MA , USA

2. Department of Statistical Science, Duke University , Durham, NC , USA

3. Department of Psychiatry and Behavioral Sciences, Duke University , Durham, NC , USA

4. Department of Neurobiology, Duke University , Durham, NC , USA

5. Department of Neurosurgery, Duke University , Durham, NC , USA

6. Department of Biomedical Engineering, Duke University , Durham, NC , USA

7. Howard Hughes Medical Institute , Chevy Chase, MD , USA

8. Department of Civil and Environmental Engineering, Duke University , Durham, NC , USA

9. Department of Biostatistics and Bioinformatics, Duke University , Durham, NC , USA

10. Department of Computer Science, Duke University , Durham, NC , USA

Abstract

Abstract Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant outcome. We use supervised autoencoders (SAEs) to improve predictive performance in this context, describe the conditions where SAEs improve predictions, and provide modelling constraints to ensure biological relevance. We experimentally validate our approach by finding a network associated with stress that aligns with a previous stimulation protocol and characterizing a genotype associated with bipolar disorder.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Institute of Mental Health

W.M. Keck Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference68 articles.

1. Network neuroscience;Bassett;Nature Neuroscience,2017

2. Sparse Bayesian infinite factor models;Bhattacharya;Biometrika,2011

3. Bayesian fractional posteriors;Bhattacharya;The Annals of Statistics,2019

4. Prenatal environmental stressors impair postnatal microglia function and adult behavior in males;Block;Cell Reports,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3