Hierarchical confusion matrix for classification performance evaluation

Author:

Riehl Kevin12ORCID,Neunteufel Michael3ORCID,Hemberg Martin4ORCID

Affiliation:

1. Gurdon Institute, University of Cambridge , Cambridge , United Kingdom

2. Technische Universität Darmstadt , Darmstadt , Germany

3. Institute of Analysis and Scientific Computing TU Wien , Vienna , Austria

4. Evergrande Center for Immunological Disease, Brigham and Women’s Hospital, Harvard Medical School , Boston , USA

Abstract

Abstract This study proposes the novel concept of hierarchical confusion matrix, opening the door for popular confusion-matrix-based (flat) evaluation measures from binary classification problems, while considering the peculiarities of hierarchical classification problems. The concept is developed to a generalised form and proven its applicability to all types of hierarchical classification problems including directed acyclic graphs, multi-path labelling, and non-mandatory leaf-node prediction. Finally, measures based on the novel confusion matrix are used for three real-world hierarchical classification applications and compared to established evaluation measures. The results, the conformity with important attributes of hierarchical classification schemes and its broad applicability justify its recommendation.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference27 articles.

1. Hierarchical multi-classification;Blockeel,2002

2. An evaluation of global-model hierarchical classification algorithms for hierarchical classification problems with single path of labels;Borges;Computers & Mathematics with Applications,2013

3. Incremental algorithms for hierarchical classification;Cesa-Bianchi;Advances in Neural Information Processing Systems,2005

4. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation;Chicco;BMC Genomics,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3