Affiliation:
1. Department of Mathematics, Stockholm University , Stockholm, 106 91 , Sweden
Abstract
Abstract
Identification of taxa can significantly be assisted by statistical classification based on trait measurements either individually or by phylogenetic (clustering) methods. In this article, we present a general Bayesian approach for classifying species individually based on measurements of a mixture of continuous and ordinal traits, and any type of covariates. The trait vector is derived from a latent variable with a multivariate Gaussian distribution. Decision rules based on supervised learning are presented that estimate model parameters through blocked Gibbs sampling. These decision regions allow for uncertainty (partial rejection), so that not necessarily one specific category (taxon) is output when new subjects are classified, but rather a set of categories including the most probable taxa. This type of discriminant analysis employs reward functions with a set-valued input argument, so that an optimal Bayes classifier can be defined. We also present a way of safeguarding against outlying new observations, using an analogue of a p-value within our Bayesian setting. We refer to our Bayesian set-valued classifier as the Karlsson–Hössjer method, and it is illustrated on an original ornithological data set of birds. We also incorporate model selection through cross-validation, exemplified on another original data set of birds.
Publisher
Oxford University Press (OUP)
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Reference97 articles.
1. A new look at the statistical model identification;Akaike;IEEE Transactions on Automatic Control,1974
2. Bayesian analysis of binary and polychotomos response data;Albert;Journal of the American Statistical Association,1993
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献