Translation-invariant functional clustering on COVID-19 deaths adjusted on population risk factors

Author:

Cheam Amay1,Fredette Marc1,Marbac Matthieu2,Navarro Fabien3ORCID

Affiliation:

1. HEC Montreal , Montreal, Quebec , Canada

2. Ensai, CNRS, CREST - UMR 9194, Univ. Rennes , F-35000 Rennes , France

3. SAMM, Université Paris 1 Panthéon-Sorbonne , Paris , France

Abstract

Abstract This paper focuses on clustering the COVID-19 death rates reported in Europe and the United States. Several methods have been developed to cluster such functional data. However, these methods are not translation-invariant (TI) and thus cannot handle different times of arrivals of the disease, nor can they consider external covariates and so are unable to adjust for the population risk factors of each region. We propose a novel three steps clustering method to circumvent these issues. First, feature extraction is performed by TI wavelet decomposition, which permits to deal with the different onsets. Then, single-index regression is used to neutralize disparities caused by population risk factors. Finally, a nonparametric mixture is fitted on the regression residuals to achieve the region clustering.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference75 articles.

1. Identifiability of parameters in latent structure models with many observed variables;Allman;The Annals of Statistics,2009

2. Clustering functional data using wavelets;Antoniadis;International Journal of Wavelets, Multiresolution and Information Processing,2013

3. Wavelet scalograms and their applications in economic time series;Ariño;Brazilian Journal of Probability and Statistics,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3