Efficient forecasting and uncertainty quantification for large-scale account level Monte Carlo models of debt recovery

Author:

Baynes Sam1,Cotter Simon L2,Russell Paul T1,Ryan Edmund M12,Waite Timothy W2

Affiliation:

1. Arrow Global Ltd , Manchester , UK

2. Department of Mathematics, University of Manchester , Manchester , UK

Abstract

AbstractThe state-of-the-art in forecasting debt recovery from portfolios of non-performing unsecured consumer loans is to use stochastic models of payment behaviour of individual customers. Monte Carlo simulation of these models can enable forecasting of collections, where computational complexity arises from the very large number of heterogeneous accounts. We aim to solve 2 problems: efficient allocation of computational resources and quantification of uncertainty. We show that robust estimators of population-level variance can be constructed using unbiased estimators of the variance of individual accounts. The proposed methods are demonstrated through application to a model similar to those used in practice.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference22 articles.

1. Optimal sliced Latin hypercube designs;Ba;Technometrics,2015

2. Diagnostics for Gaussian process emulators;Bastos;Technometrics,2009

3. Optimal pension management in a stochastic framework;Battocchio;Insurance: Mathematics and Economics,2004

4. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain;Beck;Computer Methods in Applied Mechanics and Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3