Variable selection for individualised treatment rules with discrete outcomes

Author:

Bian Zeyu12ORCID,Moodie Erica E M1ORCID,Shortreed Susan M34,Lambert Sylvie D56,Bhatnagar Sahir1

Affiliation:

1. Department of Epidemiology and Biostatistics, McGill University , Montreal, Quebec H3A 0G4 , Canada

2. Miami Herbert Business School, University of Miami , Miami, FL 33146 , USA

3. Kaiser Permanente Washington Health Research Institute , Seattle, Washington , USA

4. Department of Biostatistics, University of Washington , Seattle, Washington , USA

5. Ingram School of Nursing, McGill University , Montreal, Quebec , Canada

6. St.Mary’s Research Centre , Montreal, Quebec , Canada

Abstract

Abstract An individualised treatment rule (ITR) is a decision rule that aims to improve individuals’ health outcomes by recommending treatments according to subject-specific information. In observational studies, collected data may contain many variables that are irrelevant to treatment decisions. Including all variables in an ITR could yield low efficiency and a complicated treatment rule that is difficult to implement. Thus, selecting variables to improve the treatment rule is crucial. We propose a doubly robust variable selection method for ITRs, and show that it compares favourably with competing approaches. We illustrate the proposed method on data from an adaptive, web-based stress management tool.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference47 articles.

1. A new look at the statistical model identification;Akaike;IEEE Transactions on Automatic Control,1974

2. Doubly robust estimation in missing data and causal inference models;Bang;Biometrics,2005

3. Variable selection in regression-based estimation of dynamic treatment regimes;Bian;Biometrics,2023

4. The Dantzig selector: Statistical estimation when p is much larger than n;Candes;Annals of Statistics,2007

5. Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme;Chakraborty;Biometrics,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3