Longitudinal canonical correlation analysis

Author:

Lee Seonjoo12ORCID,Choi Jongwoo1ORCID,Fang Zhiqian1,Bowman F DuBois3

Affiliation:

1. Mental Health Data Science, New York State Psychiatric Institute , New York, NY , USA

2. Department of Biostatistics and Psychiatry, Columbia University , New York, NY , USA

3. Department of Biostatistics, University of Michigan , Ann Arbor, MI , USA

Abstract

Abstract This paper considers canonical correlation analysis for two longitudinal variables that are possibly sampled at different time resolutions with irregular grids. We modelled trajectories of the multivariate variables using random effects and found the most correlated sets of linear combinations in the latent space. Our numerical simulations showed that the longitudinal canonical correlation analysis (LCCA) effectively recovers underlying correlation patterns between two high-dimensional longitudinal data sets. We applied the proposed LCCA to data from the Alzheimer’s Disease Neuroimaging Initiative and identified the longitudinal profiles of morphological brain changes and amyloid cumulation.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference32 articles.

1. Functional network connectivity impairments and core cognitive deficits in schizophrenia;Adhikari;Human Brain Mapping,2019

2. Dementia induces correlated reductions in white matter integrity and cortical thickness: A multivariate neuroimaging study with sparse canonical correlation analysis;Avants;NeuroImage,2010

3. Canonical correlation coefficients of high-dimensional Gaussian vectors: Finite rank case;Bao;The Annals of Statistics,2019

4. The general canonical correlation distribution;Bartlett;The Annals of Mathematical Statistics,1947

5. Controlling the false discovery rate: A practical and powerful approach to multiple testing;Benjamini;Journal of the Royal Statistical Society: Series B (Methodological),1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3