A Bayesian feature allocation model for identifying cell subpopulations using CyTOF data

Author:

Lui Arthur1,Lee Juhee2,Thall Peter F3,Daher May4,Rezvani Katy4,Basar Rafet4

Affiliation:

1. Department of Statistics, Baskin School of Engineering, University of California Santa Cruz , 1156 High Street, Santa Cruz, CA, 95064 , USA

2. Department of Statistics, University of California at Santa Cruz , Santa Cruz, CA , USA

3. Department of Biostatistics, M.D. Anderson Cancer Center , Houston, TX , USA

4. Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center , Houston, TX , USA

Abstract

Abstract A Bayesian feature allocation model (FAM) is presented for identifying cell subpopulations based on multiple samples of cell surface or intracellular marker expression level data obtained by cytometry by time of flight (CyTOF). Cell subpopulations are characterized by differences in marker expression patterns, and cells are clustered into subpopulations based on their observed expression levels. A model-based method is used to construct cell clusters within each sample by modeling subpopulations as latent features, using a finite Indian buffet process. Non-ignorable missing data due to technical artifacts in mass cytometry instruments are accounted for by defining a static missingship mechanism. In contrast with conventional cell clustering methods, which cluster observed marker expression levels separately for each sample, the FAM-based method can be applied simultaneously to multiple samples, and also identify important cell subpopulations likely to be otherwise missed. The proposed FAM-based method is applied to jointly analyse three CyTOF datasets to study natural killer (NK) cells. Because the subpopulations identified by the FAM may define novel NK cell subsets, this statistical analysis may provide useful information about the biology of NK cells and their potential role in cancer immunotherapy which may lead, in turn, to development of improved NK cell therapies.

Funder

NIH

NSF

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3