Inverse set estimation and inversion of simultaneous confidence intervals

Author:

Ren Junting1ORCID,Telschow Fabian J E2ORCID,Schwartzman Armin13

Affiliation:

1. Division of Biostatistics, University of California San Diego , La Jolla, CA , USA

2. Institute of Mathematics, Humboldt Universität zu Berlin , Berlin , Germany

3. Halıcıoğlu Data Science Institute, University of California San Diego , La Jolla, CA , USA

Abstract

Abstract Motivated by the questions of risk assessment in climatology (temperature change in North America) and medicine (impact of statin usage and coronavirus disease 2019 on hospitalized patients), we address the problem of estimating the set in the domain of a function whose image equals a predefined subset of the real line. Existing methods require strict assumptions. We generalize the estimation of such sets to dense and nondense domains with protection against inflated Type I error in exploratory data analysis. This is achieved by proving that confidence sets of multiple upper, lower, or interval sets can be simultaneously constructed with the desired confidence nonasymptotically through inverting simultaneous confidence intervals. Nonparametric bootstrap algorithm and code are provided.

Funder

National Institute for Mental Health

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Reference47 articles.

1. Beyond ‘dangerous’ climate change: Emission scenarios for a new world;Anderson;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2011

2. Selection-corrected statistical inference for region detection with high-throughput assays;Benjamini;Journal of the American Statistical Association,2019

3. Excursion and contour uncertainty regions for latent gaussian models;Bolin;Journal of the Royal Statistical Society: Series B (Statistical Methodology),2015

4. Spatial confidence sets for raw effect size images;Bowring;NeuroImage,2019

5. Confidence sets for Cohen’sd effect size images;Bowring;NeuroImage,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3