Walking fingerprinting

Author:

Koffman Lily1ORCID,Crainiceanu Ciprian1ORCID,Leroux Andrew2

Affiliation:

1. Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health , Baltimore, MD 21205 , USA

2. Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora, CO 80045 , USA

Abstract

Abstract We consider the problem of predicting an individual’s identity from accelerometry data collected during walking. In a previous paper, we transformed the accelerometry time series into an image by constructing the joint distribution of the acceleration and lagged acceleration for a vector of lags. Predictors derived by partitioning this image into grid cells were used in logistic regression to predict individuals. Here, we (a) implement machine learning methods for prediction using the grid cell-derived predictors; (b) derive inferential methods to screen for the most predictive grid cells while adjusting for correlation and multiple comparisons; and (c) develop a novel multivariate functional regression model that avoids partitioning the predictor space. Prediction methods are compared on two open source acceleometry data sets collected from: (a) 32 individuals walking on a 1.06 km path; and (b) six repetitions of walking on a 20 m path on two occasions at least 1 week apart for 153 study participants. In the 32-individual study, all methods achieve at least 95% rank-1 accuracy, while in the 153-individual study, accuracy varies from 41% to 98%, depending on the method and prediction task. Methods provide insights into why some individuals are easier to predict than others.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Reference47 articles.

1. BART: Bayesian additive regression trees;Chipman;The Annals of Applied Statistics,2010

2. Gait and dementia;Cohen;Handbook of Clinical Neurology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3