Joint modelling of landslide counts and sizes using spatial marked point processes with sub-asymptotic mark distributions

Author:

Yadav Rishikesh1ORCID,Huser Raphaël1ORCID,Opitz Thomas2ORCID,Lombardo Luigi3ORCID

Affiliation:

1. Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST) , Thuwal , Saudi Arabia

2. Biostatistics and Spatial Processes (UR546), INRAE , Avignon , France

3. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente , Enschede , The Netherlands

Abstract

Abstract To accurately quantify landslide hazard in a region of Turkey, we develop new marked point-process models within a Bayesian hierarchical framework for the joint prediction of landslide counts and sizes. We leverage mark distributions justified by extreme-value theory, and specifically propose ‘sub-asymptotic’ distributions to flexibly model landslide sizes from low to high quantiles. The use of intrinsic conditional autoregressive priors, and a customised adaptive Markov chain Monte Carlo algorithm, allow for fast fully Bayesian inference. We show that sub-asymptotic mark distributions provide improved predictions of large landslide sizes, and use our model for risk assessment and hazard mapping.

Funder

King Abdullah University of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference71 articles.

1. Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the alpine environment;Amato;Engineering Geology,2019

2. Hierarchical Modeling and Analysis for Spatial Data

3. Bayesian estimates of disease maps: How important are priors?;Bernardinelli;Statistics in Medicine,1995

4. Statistical analysis of non-lattice data;Besag;Journal of the Royal Statistical Society: Series D (The Statistician),1975

5. On conditional and intrinsic autoregressions;Besag;Biometrika,1995

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3