Effects of valproic acid on histone deacetylase inhibition in vitro and in glioblastoma patient samples

Author:

Berendsen Sharon1,Frijlink Elselien1,Kroonen Jèrôme12,Spliet Wim G M3,van Hecke Wim3ORCID,Seute Tatjana1,Snijders Tom J1,Robe Pierre A12

Affiliation:

1. Departments of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center of Utrecht, Utrecht, The Netherlands

2. Department of Human Genetics, GIGA Research Center, University of Liège, Liège, Belgium

3. Department of Pathology, University Medical Center of Utrecht, Utrecht, The Netherlands

Abstract

Abstract Background The antiepileptic drug valproic acid (VPA) inhibits histone deacetylase in glioblastoma cells in vitro, which influences several oncogenic pathways and decreases glioma cell proliferation. The clinical relevance of these observations remains unclear, as VPA does not seem to affect glioblastoma patient survival. In this study, we analyzed whether the in vitro effects of VPA treatment on histone acetylation are also observed in tumor tissues of glioblastoma patients. Methods The in vitro effects of VPA treatment on histone acetylation were assessed with immunofluorescence and western blotting. On tissue microarrays and in fresh-frozen glioblastoma tissues we investigated the histone acetylation patterns of patients who were either treated with VPA or did not receive antiepileptic drugs at the time of their surgery. We also performed mRNA expression-based and gene set enrichment analyses on these tissues. Results VPA increased the expression levels of acetylated histones H3 and H4 in vitro, in agreement with previous reports. In tumor samples obtained from glioblastoma patients, however, VPA treatment affected neither gene (set) expression nor histone acetylation. Conclusions The in vitro effects of VPA on histone acetylation status in glioblastoma cells could not be confirmed in clinical tumor samples of glioblastoma patients using antiepileptic doses of VPA, which reflects the lack of effect of VPA on the clinical outcome of glioblastoma patients.

Funder

T&P Bohnenn Fund

Belgian Ministry of Health

FNRS of Belgium

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3