Tumor location and neurocognitive function—Unravelling the association and identifying relevant anatomical substrates in intra-axial brain tumors

Author:

Shah Kanchi12,Bhartia Vinayak3,Biswas Chandrima12,Sahu Arpita24,Shetty Prakash M12,Singh Vikas12,Velayutham Parthiban12,Awate Suyash P3,Moiyadi Aliasgar V12ORCID

Affiliation:

1. Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Center , Mumbai, Maharashtra , India

2. Department of Health Sciences, Homi Bhabha National Institute , Mumbai, Maharashtra , India

3. Computer Science and Engineering Department, Indian Institute of Technology (IIT) Bombay. Mumbai , Maharashtra , India

4. Department of Radiodiagnosis, Tata Memorial Center , Mumbai, Maharashtra , India

Abstract

Abstract Background Neurocognitive function is a key outcome indicator of therapy in brain tumors. Understanding the underlying anatomical substrates involved in domain function and the pathophysiological basis of dysfunction can help ameliorate the effects of therapy and tailor directed rehabilitative strategies. Methods Hundred adult diffuse gliomas were co-registered onto a common demographic-specific brain template to create tumor localization maps. Voxel-based lesion symptom (VLSM) technique was used to assign an association between individual voxels and neuropsychological dysfunction in various domains (attention and executive function (A & EF), language, memory, visuospatial/constructive abilities, and visuomotor speed). The probability maps thus generated were further co-registered to cortical and subcortical atlases. A permutation-based statistical testing method was used to evaluate the statistically and clinically significant anatomical parcels associated with domain dysfunction and to create heat maps. Results Neurocognition was affected in a high proportion of subjects (93%), with A & EF and memory being the most affected domains. Left-sided networks were implicated in patients with A & EF, memory, and language deficits with the perisylvian white matter tracts being the most common across domains. Visuospatial dysfunction was associated with lesions involving the right perisylvian cortical regions, whereas deficits in visuomotor speed were associated with lesions involving primary visual and motor output pathways. Conclusions Significant baseline neurocognitive deficits are prevalent in gliomas. These are multidomain and the perisylvian network especially on the left side seems to be very important, being implicated in dysfunction of many domains.

Funder

Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3